
Keith Schneider, 3 August 2006

1 of 6

Matlab and Psychophysics Toolbox Seminar
Part 3. Timing and Input

The Psychophysics Toolbox allows precise timing using highly accurate clocks. The
function GetSecs returns the number of seconds that have elapsed on the main CPU
clock since the last reboot. The function WaitSecs(x) waits for x seconds.

You can get an idea of how fast your computer (and the GetSecs function) runs using
the following test:

>>times=zeros(1,10000);
>>for i=1:10000; times(i)=GetSecs; end
>>plot(times)

You can see that time increases linearly (hopefully) over time. You can look at the
timing between iterations of the loop like this:

>>plot(diff(times))

On the x-axis is the loop interation number, and on the y-axis is the time that elapsed
since the previous iteration of the loop, in seconds. So, 0.001 on the y-axis indicates one
millisecond. You can see that the time between iterations of the loop is very fast, but still
measurable.

Depending on your operating system (especially Mac OSX), you may see spikes in this
graph that indicate that some process in the background is using some of the CPU time.

When timing is critical, you will want to tell the Psychophysics Toolbox to monopolize
the CPU such that the background processes don’t interfere. The way to do this is to use
the Priority function.

Try the following (Note that if you have not previously done so, running the Priority
function on Mac OSX will require that you run a script to allow the function to disable an
updating process that normally runs in the background. Follow the instructions that are
printed upon invoking Priority for the first time. If you don’t get any warning, then
this procedure has already been performed for your machine.):

>>Priority(9) % or 7 for Windows
>>for i=1:10000; times(i)=GetSecs; end
>>Priority(0)

and plot the times and time differentials, as above. You shouldn’t see any large spikes in
the timing. Priority(9) tells the Psychtoolbox to request the maximum amount of
CPU time. Priority(0) returns it to normal (and restarts the background updating
process on Mac OSX).

Matlab and Psychophysics Toolbox Seminar: Part 3

2 of 6

It is sometimes useful to run this sort of timing loop when you are testing a stimulus to
see how long it takes you to draw a single frame. For instance, if you are drawing a
complicated animation, depending on the speed of your computer, it may take more than
one refresh cycle of the monitor to draw the frame, in which case the animation won’t
look smooth. More on this below, as well as next week’s lab.

Let’s test the drawing speed of the computer you are using with this script:

[w,rect] = Screen('OpenWindow',0);
n=10000; % number of circles to draw
r=50; % radius of circle
times=zeros(1,n);
x=rand(1,n)*rect(3);
y=rand(1,n)*rect(4);
colors = 256*rand(n,3);
start_time = GetSecs;
for i=1:n
 Screen('FillOval',w,colors(i,:),[x(i)-r,y(i)-r,x(i)+r,y(i)+r]);
 times(i) = GetSecs-start_time;
end
Screen(’Flip’,w)
kbwait;
Screen('Close',w)

After you run this script, times(n) gives the total time required to draw all of the
circles, and diff(times) gives the time between each drawing. You won’t see the
circles being drawn because they are not revealed until you execute the
Screen(‘Flip’) function.

Now try increasing the radius of the circles, r (and also decreasing n, if it takes too long).
You should see that it takes longer to draw a larger object. If the radius is very large and
you are using a slow computer, it may take longer than one screen refresh to draw each
circle.

Display synchronization

As we discussed last week, the new Psychophysics Toolbox utilizes double buffering to
avoid video artifacts, which eliminates many of the difficulties present using the previous
version. The Screen(‘Flip’) function pauses briefly until the end of the monitor
refresh cycle and then returns control to the user to allow drawing for the next video
frame. The exact time at which the stimulus will appear depends on how far into the
video refresh cycle your monitor is at the time you issue the Screen(‘Flip’)
command.

Let’s modify our script so that it draws one circle per video frame. Add this line
immediately at the beginning of the for loop:

Matlab and Psychophysics Toolbox Seminar: Part 3

3 of 6

Screen('Flip',w,[],1); % doesn’t work for Windows

The extra parameters in the command tell the function not to clear the screen each time
the buffers are flipped (overriding the default to clear the screen to the background color).
Also, make sure that your n is no more than a few hundred, or the script will take a long
time to run. Now, plot(times) and plot(diff(times)). What do you see?
What is the number you see in the latter case?

Image timing

Last week we used the Screen('DrawTexture') function to draw an image to the
screen. This function is very fast and should be comparable in speed to the shape
drawing commands. You can test its timing with the following modifications to the
script:

[w,rect] = Screen('OpenWindow',0);
img=imread('myimage.jpg'); % read in your image
t = Screen('MakeTexture',w,img);
[sy sx sz] = size(img);
n=500; % number of images to draw
times=zeros(1,n);
x=rand(1,n)*rect(3);
y=rand(1,n)*rect(4);
start_time = GetSecs;
for i=1:n
 Screen('DrawTexture',w,t,[], ...
 [x(i)-sx/2,y(i)-sy/2,x(i)+sx/2,y(i)+sy/2]);
 times(i) = GetSecs-start_time;
end
Screen('Flip',w);
KbWait;
Screen('CloseAll')

Now do plot(diff(times),'.'). Notice the distribution of drawing times. How
does resizing the image affect the drawing times? Add the lines

sx=sx/2;
sy=sy/2;

after the second line of your script. What if you double the size instead of halving it?

Now add a Screen('Flip',w,[],1); line into your for loop. How does this
affect the times?

Matlab and Psychophysics Toolbox Seminar: Part 3

4 of 6

Displaying timed images

Now we are ready to write a simple script to display images in a particular timing
sequence. Let’s say we want to display an image ten times, once every 3 seconds, for
500 ms each time (you could modify this to present different images each time). This
looks like a lot to type in, but much of it can be copied from the scripts you have already
written.

img=imread('myimage.jpg');
[sy sx sz] = size(img);
[w,rect] = Screen('OpenWindow',0,[0 0 0]);
t=Screen('MakeTexture',w,img);
nreps=10; % number of images to draw
on_time=0.5;
repeat_time = 3;
x=rand(1,nreps)*rect(3);
y=rand(1,nreps)*rect(4);
start_time = GetSecs;
next_on_time = 0;
next_off_time = on_time;
i=0;
while GetSecs - start_time < nreps * repeat_time
 thetime = GetSecs-start_time;
 if thetime >= next_on_time
 i=i+1;
 dest_rect = [x(i)-sx/2,y(i)-sy/2,x(i)+sx/2,y(i)+sy/2];
 Screen('Flip',w);
 Screen('DrawTexture',w,t,[],dest_rect);
 next_on_time = next_on_time + repeat_time;
 elseif thetime >= next_off_time
 Screen('Flip',w);
 next_off_time = next_off_time + repeat_time;
 end
end
Screen('FillRect',w,[255 255 255]); % white screen at end
Screen('Flip',w);
KbWait;
Screen('CloseAll')

This is just one example of a timing loop. There are many different ways to do these. If
you want to be sure that your images are displayed at exactly the right times, you could
check using the GetSecs function or the output arguments of Screen('Flip').

Matlab and Psychophysics Toolbox Seminar: Part 3

5 of 6

Keyboard input

The Psychophysics Toolbox provides a fast function for measuring key responses,
KbCheck. KbCheck is an instantaneous function, meaning that it returns the current
state of the keyboard. Its syntax is (see the help file):

[keyIsDown,secs,keyCode] = KbCheck;

keyIsDown is true if any key is pressed. secs returns the current time when the
function is called, and keyCode is an array of all the possible key values. If key number
2 is depressed, then keyCode(2) will be true. Multiple keys can be pressed at once,
and keyCode will register them all. The the KbName function allows you to figure out
which key code corresponds to which key.

Try this program:

fprintf('Press any key(s). Press escape key to exit.\n');
while KbCheck; end % wait until all keys are released
escapekey = KbName('escape');
while 1
 keyisdown = 0;
 while ~keyisdown
 [keyisdown, secs, keycode] = KbCheck;
 WaitSecs(0.001) % delay to prevent CPU hogging
 end
 fprintf('Current key(s) down: %s which is %s\n', ...
 char(int2str(find(keycode))), ...
 char(KbName(keycode))');
 if keycode(escapekey)
 break;
 end
end

Reaction time

Often you will want to measure the response time in reaction to a stimulus that you
present. You might, for example, present a stimulus and instruct the subject to press a
key as fast as possible thereafter. Here’s an example reaction time program (on the next
page). Press the space bar as soon as the white circle flashes. Extra credit for the person
with the fastest mean reaction time.

Note the WaitSecs(0.001) command in the KbCheck loop. It is necessary to
introduce some delays in tight loops like this, or else it will hog the CPU time and the
operating system may penalize the program, shutting it down for several seconds.

Matlab and Psychophysics Toolbox Seminar: Part 3

6 of 6

[w,rect] = Screen('OpenWindow',0,[0 0 0]);
ntrials=10; % number of trials
r=50; % radius of circle in pixels
tmin = 1; % minimum time between trials
tmax = 3; % maximum
rtime = zeros(1,ntrials);
x0=rect(3)/2;
y0=rect(4)/2;
rkey=KbName('Space'); %response key = space bar
for i=1:ntrials
 keyisdown = 1;
 while(keyisdown) % first wait until all keys are released
 [keyisdown,secs,keycode] = KbCheck;
 WaitSecs(0.001); % delay to prevent CPU hogging
 end
 % draw fixation point
 Screen('FrameRect',w,[255 255 255],[x0-3,y0-3,x0+3,y0+3]);
 Screen('Flip',w);
 wait_time = rand * (tmax-tmin) + tmin;
 start_time = GetSecs;
 while(~keycode(rkey))
 if GetSecs-start_time > wait_time
 wait_time = Inf; % so as not to repeat this part
 Screen('FillOval',w,[255 255 255],[x0-r,y0-r,x0+r,y0+r]);
 Screen('Flip',w);
 time0=GetSecs;
 end
 [keyisdown,secs,keycode] = KbCheck;
 WaitSecs(0.001); % delay to prevent CPU hogging
 end
 rtime(i)=secs-time0;
 Screen('Flip',w);
end
Screen('Close',w)
avg_rtime = 1000*mean(rtime) % mean reaction time in milliseconds

Mouse input

In addition to the keyboard, the Psychophysics Toolbox also allows you to read the
mouse using the GetMouse function. It works much the same way the KbCheck
function does, returning the instantaneous state of the mouse. Try modifying the above
program to read the mouse input. Note that since GetMouse doesn’t return a secs
argument, you’ll have to issue a secs=GetSecs command immediately upon getting a
positive click from the mouse.

Also try MouseTraceDemo2OSX. You should open the script and look at its code.

